
PROGRAMMING GUIDE FOR VIVIDSPARKS FAMILY OF MANYCORES

Executive Summary
The GPU has become an integral part of today’s mainstream computing systems. The modern GPU is not only a
powerful graphics engine but also a highly parallel programmable processor featuring peak arithmetic and mem-
ory bandwidth that substantially outpaces its CPU counterpart. The GPU’s rapid increase in both programmability
and capability has spawned a research community and industries that has successfully mapped a broad range of
computationally demanding, complex problems to the GPU. This effort in general-purpose computing on the GPU,
also known as GPU computing, has positioned the GPU as a compelling alternative to traditional microprocessors in
high-performance computer systems of the future. Leaders in computing are now profiting from their investments
in new number systems initiated half a decade ago. We introduce revolutionary GPU called RacEr based on POSITTM
number system. The POSIT number system is a tapered floating point with very efficient encodings for real numbers
and two exceptional values, zero and infinity. The POSIT encoding leads to higher accuracy compared to floats at
half bit-width, which leads to higher performance and lower cost for big-data applications. Furthermore, the POSIT
standard defines rules for reproducibility in concurrent environments enabling high-productivity and lower-cost for
software application development for multi-core and many-core deployments. In this document we give program-
ming guidelines for VividSparks family of manycores. The programming guidelines remains same for all products
except number of cores in each product. We have given programming guidelines using RacEr.

Introduction
RacEr GPU consists of an array of tiles, connected by a 2-D mesh network called the manycore accelerator,
with an attached external memory and I/O system. Most tiles contain processing, memory, and communication
routers. Processing in a tile is done with CPU cores and specialized accelerator cores The accelerator cores are
added to personalize the RacEr architecture and to improve energy/performance for targeted applications. In
addition to these tiles, the architecture features victim cache tiles, often located on the edge of the tiled array
and termed column caches ($), but potentially located at other positions in the array. These victim cache tiles
are in turn connected to memory controllers that interface to multiple parallel memory channels that go to DRAM
-- high bandwidth memory (HBM), DDR4, or other. The Figure 1 on next page shows the high-level view. In some
cases, some of the CPU cores might be replaced with accelerator tiles.

Each CPU core contains a 4KB direct-mapped instruction cache (1024 instructions), and a 4KB local data
memory. The cores features non-blocking loads and stores, which allow them to overlap the memory latency to
remote memories in the system while they execute non-dependent instructions. These word-level accesses go
out onto the 2-D mesh network to the remote tile, cache or dram that owns the address in question.

Within the architecture, we have the concept of a tile group, which is a physically contiguous subarray of tiles.
Tile groups work together to perform cooperative multiprocessing, where a group of cores shares a set of
banked memories and distributes shared data structures across these banks. The cores use a bulk synchronous
programming model, where a program is divided into phases in which each address is either read/write-owned
by a single tile, read-owned by everybody, or requires atomic operation/mutex enabled atomic accesses.
Between each phase, the tiles synchronize via a synchronization barrier. This allows a group of tiles to bring in a
chunk of memory from DRAM, operate on that data in parallel with high locality, and then write it back to DRAM.
Access to data structures within a tile group enjoys reduced energy usage, latency and increased throughput
relative to access to data structures in DRAM, or in the column caches.

1

21

DRAM

DRAM

DRAM

DRAM

IO ($) IO ($) IO ($) IO ($)

DRAM

IO ($)

DRAM

IO ($)

DRAM

IO ($)

DRAM

IO ($)

DRAM

IO ($)

DRAM

IO ($)

DRAM

IO ($)
DRAM

IO ($)

DRAM

DRAM

DRAM

DRAM

IO ($) IO ($) IO ($) IO ($)

PCIe
PC

Ie

R R R R R R R R

R R R R R R R R

R- Router

IO-Input Ouput

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Figure 1: RacEr Architecture

RacEr API
The following functions in Tables 1 are defined for programmer convenience:

3

Macro De�nition

RacEr API

Table 1

3 4

CUDA-Lite Programming Guide

Introduction
The cuda-lite programming extension allows RacEr to mimic the environment and structure of
a GPU, and provides a parallel SPMD programming interface. A series of architectural and soft-
ware upgrades are implemented to allow for a simple step-by-step transition from CUDA to RacEr
code. In this section, we will compare the execution model of the two architectures, the hardware/
software extensions to support CUDA-Lite in RacEr, then explain the necessary steps for CUDA to
RacEr translation, and conclude with a series of examples.

Execution Model
CUDA follows the single-instruction-multiple-data (SIMD) programming model, in which threads
are the basic units of execution. A kernel is launched with programmer-specified grid and block
dimensions, in which threads are grouped into three-dimensional grid of three-dimensional blocks.
Blocks are dispersed into GPU streaming multiprocessors (SMs) upon kernel launch. A block of
threads assigned to an SM is then divided into fixed-length groups called warps, scheduled to be
executed in a parallel lock-step manner, where each thread executes the same set of instructions
on their own private data set. The scheduler unit in SM sequentially runs warps until all block
threads finish their execution. Notice that the combination of parallel and sequential execution in
this model is crucial, since running thousands of threads all at once will require unfeasibly large
hardware resources.

The RacEr manycore forms a similar model with the same combination of parallel and serial
thread execution observed in GPUs. To mimic the SPMD architecture of an SM in RacEr, CPU
cores are grouped into tilegroups, a two-dimensional grid of adjacent tiles that run the same
instructions on their private data memory. Each block of threads will be assigned to one tilegroup,
with the threads evenly distributed among the cores. Parallel execution is achieved by running all
cores in a tilegroup at the same time, while threads inside each core are executed sequentially, in
a threadloop. Threadloops are in fact a loop that is wrapped around the kernel instructions, forc-
ing the core to iterate over all threads assigned to it, and execute them sequentially. The Figure 2
below demonstrates the arrangement of threads into blocks and grids, and compares their execu-
tion strategy in both GPUs and RacEr. Execution model of GPU vs. RacEr. Threads in a Kernel are
organized into a grid of blocks, which are dispatched to SMs in GPU and tilegroups in RacEr for
execution.

(0,0,0) (1,0,0) (2,0,0) (3,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(1,1,0)

(1,2,0)

(1,3,0)

(2,1,0)

(2,2,0)

(2,3,0)

(3,1,0)

(3,2,0)

(3,3,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

(0,0,2) (1,0,2) (2,0,2) (3,0,2)

(0,0,0) (1,0,0)

(0,1,0) (1,1,0) (2,1,0)

(0,0,1) (1,0,1) (2,0,1)

(2,0,0)

Instruction Cache

Scheduler Scheduler

Thread Private
Register file

Execution Units

0 1 2
31

L1 data Cache

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

for threads in
threadloop
{run Kernel}

for thread in
wraps in SM
{run Kernel}

Sequential
thread
execution

Sequential
thread
execution

Streaming Multiprocessor

Concurrent
thread
execution

Concurrent
thread
execution

Dispatch to
tilegroup

Dispatch to
SMS

CPU tilegroup

Host code .c

Kernel 1

Host code .c

Kernel 2

Kernel code

.......

.......

.......

Grid dimensions <4,3,3>

Block dimensions <3,2,2>
blockldx = <3,1,0>

threadldx = <2,0,0>

GPU

Figure 2: CUDA-Lite Architecture

Hardware/Software Extensions

Tilegroup-Shared Memory

In a GPU, threads in a block have access to

1. hread-private registers,
2. Block-shared memory,
3. Global memory through a hierarchy of caches.

RacEr implements similar memory hierarchy by use of

1. Private data memory in each core,
2. Tilegroup-shared memory
3. Global DRAM banks connected to the bottom of each column

Tilegroup-shared memory is referred to a section of each core’s data memory, banded together
and accessible from all cores by remote load/store operations over the manycore network. The
close proximity of cores in a tilegroup ensures small delay cycles for load/store operations.

5

The Programmer can declare tilegroup-shared memory with language-specific macros in the
RacEr programming interface. The hardware handles the distribution of shared space among the
cores, and generates hash functions necessary to access the tilegroup-shared array from any
core in tilegroup.

Threadloops
Cores in a tilegroup will be responsible for running multiple threads of a block. To make that pos-
sible, we follow an approach similar to MCUDA to transform a CUDA code to a sequential program
covered by nested loops, with each iteration representing a thread. A series of steps is needed to
achieve this feature.

Passing Known Variables

A series of CUDA known variables are defined, and their value is passed to RacEr code.

gridDim		 Grid dimensions <x, y, z>
blockDim		 Block dimensions <x, y, z>
blockIdx		 Position of block in grid <x, y, z>

RacEr code also has access to its own hardware specific variables, color coded as Maroon.

RacEr_tilegroupDim		 tilegroup dimensions <x, y, z=1>
RacEr_x, RacEr_y, RacEr_z		 position of core in tilegroup (RacEr_z = 0)
RacEr_num_threads_per_core	 <x, y, z> = blockDim / RacEr_tilegroupDim

Introducing Nested Threadloops

- The kernel code is wrapped in a series of nested loops, one for each dimension of block.

- Thread index variables (threadIdx.<x,y,z>) are replaced by loop iterators (iter_x, iter_y, iter_z) in
 kernel code.

 - The number of threads per core depends on the blockDim / RacEr_tilegroupDim ratio for each
 dimension. Notice that the z dimension of tilegroup is always 1, and RacEr_z always resolves to
 0. That means every core is responsible for running all corresponding z dimensions of block at
 all times.

Thread Synchronization - Loop Fission

- CUDA enforces synchronization among threads in a block by use of the __threadsynchronize()
 primitive, stalling further execution until all threads have reached a certain point in the code.
 RacEr achieves the same functionality by employing two levels of synchronization:

 - Synchronization among cores in a tilegroup: enforced by use of
 RacEr_tile_group_barrier primitive already implemented in RacEr hardware.

5 6

 Original CUDA Kernel

 Kernel After Step1

 - Synchronization among threads in a single core: implicitly held by the sequential
 execution model of a threadloop.

- Threadloop is an implicit barrier for all threads in core:

 - Each iteration executes a thread to its end.
 - Then suspends the thread until other threads have reached the same point.

- For a synchronization primitive inside a threadloop, RacEr breaks the already
 existing threadloop into two to enforce an implicit barrier, one for instructions before the sync,
 and one for those after it.

Thread Synchronization - Deep Fission

- What if sync instruction is inside a for loop, while loop, or if/else construct?
- The following algorithm (adopted from MCUDA) can resolve all synchronization conflicts in a
 CUDA code:

7

 Kernel After Step 1 Kernel After Step 2

7 8

 Translate for loops into while loops, extract initialization and conditions. Initialize the fifo S: add
 all synchronization statements to the fifo S Perform on every element Si in S:
 loop:
	 if immediate scope containing Si is not a threadloop
		 partition scope into three sections:
 1. Threadloop before Si
 2. Si
 3. Threadloop after Si
	 else
				 perform Loop Fission to the threadloop containing Si
			 endif

 S construct parent of S in the AST (abstract syntax tree)
		 endloop

- Note: control flow statements are treated as synchronization statements.
- The following code shows an example of the algorithm. Maroon sections show the change made
 in every step of the code from the previous one.

Step 3: Deep Fission (Sync1) Step 4: Deep Fission (while2) 9

Step 1: Original Code + Threadloop Step 2: for while

Step 5: Loop Fission (while1) Step 6: Loop Fission (break)

Thread Synchronization - Memory Allocation

- Thread private variables need to remain live in all threadloops.
- Universal replication: For each thread-private variable, create a three-dimensional array the size
 of the RacEr_num_threads_per_core variable.
- Selective replication: Only do so for necessary variables:
 - Kernels with no synchronization statements do not need replication.
 - Variables with live ranges contained inside their thread loop (not accessed outside)
 do not need to be replicated.

9 10

CUDA to RacEr

Replacement Reference
The following table includes all high-level terms in CUDA and their equivalent for the RacEr.

CUDA RacEr

Replacement Reference Guide for CUDA to RacEr Translation

-------Memory Allocation------

-------Synchronization------

11

11

Usage

RacEr manycore programs are running in Amazon Web Services (AWS) F1 instance. This
infrastructure provides Xilinx Alveo Data Center Card (https://www.xilinx.com/products/boards-
and-kits/alveo/u280.html) attached to standard machine instances. We provide pre-configured
Linux images and pre-compiled Amazon FPGA Images (AFIs / AGFIs) to reduce setup time. This is
a standard build and development environment that is portable across sites. We assume familiari-
ty with AWS EC2 and an existing AWS account.

Software Libraries

Once a Manycore program has been compiled, it may be loaded onto the Manycore and run. We
also provide memory primitives that allow host programs to read from and write to and from the
Manycore’s memory. Together, these features give the user considerable flexibility in interacting
with the Manycore; we conclude with a short explanation on how to write, compile, and run host
programs.

Kernel Drivers

RacEr come swith pre-installed kernel drivers. The F1 environment will use a driver developed by
AWS. The driver is used to memory map one of the FPGA’s Base Address Registers (BARs) so that
host programs may access the FPGA from userspace.

User-Level Library

The User-Level Library provides an interface to communicate with the Manycore as either a
Master or Worker. The interface’s feature set is described in the figure below:

Run binary on RacEr
Manycore

Load
binary

Start
execution

Stop
execution

Access Manycore
Memory

Write Read Store to Host

Print data Signal
Sucess

Signal
Failure

Host (Master)

Manycore (Worker)

Host (Worker)

Manycore (Master)

12

FIFO Interface

All communication between the Host and Manycore occurs over PCIe. PCIe interactions where
the Manycore is the Master are routed to a separate FPGA FIFO channel from those where the
Manycore is the Worker. Each FIFO is memory mapped to a userspace address. When host pro-
grams write and read to these FIFOs through the API functions, the appropriate FIFO is accessed
depending on the type of interaction.

Loader

Host program may load a binary such that it is executed by multiple tiles in multiple tile groups. To
configure the tiles for execution, a host program must set each tile’s tile group and load the bina-
ry into the tiles. To set the tile group of a tile, use RacEr_mc_set_tile_group_origin(). To load the
binary into the tiles, use RacEr_mc_load_binary(), which accepts the path of the binary as well as
a list of (x, y) coordinates to be loaded. The binary’s instructions are loaded into each tile’s icache
and into a predefined segment of DRAM. Additionally, the binary’s data segment is loaded into the
data memory of each tile. Subsequent to loading, the RacEr_mc_unfreeze() may be used to start a
specific tile’s execution; RacEr_mc_freeze() may be called to restart a specific tile.

Endpoint Physical Address (EPA) Mem-Copy API

Host programs may also use the master channel to write to and read from the Manycore’s
memory. To write a buffer on the host to RacEr Manycode memory, use the function
RacEr_mc_copy_to_epa(). To read from the the RacEr Manycore, use RacEr_mc_copy_from_epa().

Basic Program Structure

A host program must be written in C or C++ and should first call RacEr_mc_init_host(). This maps
the PCIe FIFOs to user space. Once this function is called, the userspace program may interact
with the FPGA through the User-Level Library; the headers for the API, which are located in the
standard Linux location for header files, should be included.

Compiling and Running

Before running a host program, the appropriate bitstream must be loaded onto the Xilinx Alveo Data
Center Card (https://www.xilinx.com/products/boards-and-kits/alveo/u250.html), and the user-level
library must be compiled into a dynamic library and moved to the standard location for Linux librar-
ies.

12

 VividSparks IT Solutions Pvt. Ltd.
 License no: U72200K2014OPC077975
 #38 BSK Layout, Hubli-580031, India.
 www.vivid-sparks.com
 inquiry@vivid-sparks.com

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit.
Copyright © 2021 VividSparks IT Solutions Pvt. Ltd.

